Thermoelectric and structural characterizations of individual electrodeposited bismuth telluride nanowires
نویسندگان
چکیده
The thermoelectric properties and crystal structure of individual electrodeposited bismuth telluride nanowires NWs were characterized using a microfabricated measurement device and transmission electron microscopy. Annealing in hydrogen was used to obtain electrical contact between the NW and the supporting Pt electrodes. By fitting the measured Seebeck coefficient with a two-band model, the NW samples were determined to be highly n-type doped. Higher thermal conductivity and electrical conductivity were observed in a 52 nm diameter monocrystalline NW than a 55 nm diameter polycrystalline NW. The electron mobility of the monocrystalline NW was found to be about 19% lower than that of bulk crystal at a similar carrier concentration and about 2.5 times higher than that of the polycrystalline NW. The specularity parameter for electron scattering by the NW surface was determined to be about 0.7 and partially specular and partially diffuse, leading to a reduction in the electron mean-free path from 61 nm in the bulk to about 40 nm in the 52 nm NW. Because of the already short phonon mean-free path of about 3 nm in bulk bismuth telluride, diffuse phonon-surface scattering is expected to reduce the lattice thermal conductivity of the 52–55 nm diameter NWs by only about 20%, which is smaller than the uncertainty in the extracted lattice thermal conductivity based on the measured total thermal conductivity and calculated electron thermal conductivity. Although the lattice thermal conductivity of the polycrystalline NW is likely lower than the bulk values, the lower thermal conductivity observed in this polycrystalline sample is mainly caused by the lower electron concentration and mobility. For both samples, the thermoelectric figure of merit ZT increases with temperature and is about 0.1 at a temperature of 400 K. The low ZT compared to that of bulk crystals is mainly caused by a high doping level, suggesting the need for better control of the chemical composition in order to improve the ZT of the electrodeposited NWs. Moreover, bismuth telluride NWs with diameter less than 10 nm would be required for substantial suppression of the lattice thermal conductivity as well as experimental verification of theoretical predictions of power factor enhancement in quantum wires. Such stringent diameter requirement can be relaxed in other NW systems with longer bulk phonon mean-free path or smaller effective mass and thus longer electron wavelength than those in bulk bismuth telluride. © 2009 American Institute of Physics. DOI: 10.1063/1.3133145
منابع مشابه
Thermal properties of electrodeposited bismuth telluride nanowires embedded in amorphous alumina
Bismuth telluride nanowires are of interest for thermoelectric applications because of the predicted enhancement in the thermoelectric figure-of-merit in nanowire structures. In this letter, we carried out temperature-dependent thermal diffusivity characterization of a 40 nm diameter Bi2Te3 nanowires/alumina nanocomposite. Measured thermal diffusivity of the composite decreases from 9.2310−7 m2...
متن کاملTemplate Synthesis of Bismuth Telluride Nanowires
We report the fabrication of thermoelectric bismuth teUuride nanowires using the template synthesis method. A simple electrodeposition procedure was used to produce the nanowires within the pores of an alumina filtration membrane. The resulting bismuth telluride/alumina composite membranes constitute an array of thermoelectric nanowires surrounded by a thermally and electrically insulating matr...
متن کاملEffect of the energy dependence of the carrier scattering time on the thermoelectric power factor of quantum wells and nanowires
Related Articles Large magneto (thermo) dielectric effect in multiferroic orthorhombic LuMnO3 J. Appl. Phys. 111, 114103 (2012) High thermoelectric performance of solid solutions CuGa1−xInxTe2 (x=0–1.0) Appl. Phys. Lett. 100, 231903 (2012) Enhanced thermoelectric figure-of-merit ZT for hole-doped Bi2Sr2Co2Oy through Pb substitution J. Appl. Phys. 111, 103709 (2012) Lattice thermal conductivity ...
متن کاملSynthesis and thermoelectric properties of compositional-modulated lead telluride-bismuth telluride nanowire heterostructures.
We demonstrate the rational solution-phase synthesis of compositional modulated telluride nanowire heterostructures containing lead telluride (PbTe) and bismuth telluride (Bi2Te3). By tuning the ratio between PbTe and Bi2Te3 through adjusting the amount of critical reactants and precursors during the synthesis, the influence of composition on the thermoelectric properties of the nanowire hetero...
متن کاملThermoelectric properties of electrically gated bismuth telluride nanowires
We theoretically studied how the electric field effect can modify thermoelectric properties of intrinsic, n-type and p-type bismuth telluride nanowires with the growth direction 110 . The electronic structure and the wave functions were calculated by solving self-consistently the system of the Schrödinger and Poisson equations using the spectral method. The Poisson equation was solved in terms ...
متن کامل